首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   9篇
力学   1篇
数学   1篇
物理学   4篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1992年   1篇
  1989年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
12.
Efforts to improve the in vitro embryo production process in pigs have included modifying culture medium and number of spermatozoa inseminated in order to reduce the incidence of polyspermy. Polyspermy is a pathological condition which results in aberrant embryonic development. The microchannels are designed to more closely mimic the function of the oviduct and create a flow pattern of spermatozoa past the oocytes similar to the pattern in the oviduct. In vitro fertilization of porcine oocytes in the microchannels has produced a higher incidence of monospermic penetration (p<0.05) as compared to the oocytes fertilized in the traditional microdrop system with comparable penetration and male pronucleus formation rates. Additionally, cleavage rates of the embryos as well as development to the blastocyst stage are similar. Here we demonstrate that the biomimetic microchannel in vitro fertilization system can reduce polyspermy and, therefore, increase the number of potentially viable embryos without reducing the overall in vitro production efficiency.  相似文献   
13.
Natural oils (NOs) and essential oils (EOs) are widely used in the food and beverage, medical, aromatherapy and cosmetic industries, but little is known about their elemental composition or antioxidant ability. Microwave-assisted acid digestion and inductively coupled plasma-optical emission spectroscopy were used to determine the non-toxic elements (Al, Ca, Cu, Fe, K, Mg, Na, Se and Zn) and potentially toxic elements (As, Cr, Cd, Mn, Ni and Pb) concentrations in 13 selected NOs and EOs. The per cent recoveries of laboratory-fortified blanks analysed for quality control were 94–110%. The elemental concentrations varied widely in NO and EO samples, as demonstrated by the large standard deviation obtained for some elements. The average levels of non-toxic elements (Al (14.5 ± 3.7 μg/g); Ca (278 ± 138 μg/g); Cu (7 ± 14 μg/g); Fe (16 ± 5 μg/g); K (36 ± 31 μg/g); Mg (56 ± 27 μg/g); Na (266 ± 277 μg/g); Se (0.7 ± 0.3 μg/g) and Zn (6.1 ± 2.6 μg/g)) were determined in NOs and EOs. Comparatively, low levels of potentially toxic elements (As (0.1 ± 0.2 μg/g); Cd (0.1 ± 0.0 μg/g); Cr (0.2 ± 0.1 μg/g); Mn (0.8 ± 0.1 μg/g); Ni (4.5 ± 2.2 μg/g); and Pb (0.3 ± 0.2 μg/g)) were obtained in the oils. Principal component analysis (PCA) revealed that the first two principal components explained 100% of the variability in the elemental concentrations. Na, Ca, Mg and K were the main contributors to PCA. Non-toxic element pairs were strongly correlated (R2 > 0.9440) indicating a common source in these oils, but toxic element pairs were poorly correlated. Although toxic element concentrations were low, routine monitoring in oils is recommended. The antioxidant ability of NOs and EOs to potentially reduce free radicals, which are often involved in several degenerative diseases, such as ageing, stroke, diabetes and cancers was determined by DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) free radical scavenging assay and ultraviolet-visible spectroscopy. Jasmine, castor and tea tree lemon oils were the best antioxidants. The oils in this study have the potential to replace artificial antioxidants used in foods, cosmetics and other products.  相似文献   
14.
15.
Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80?% measured by ATR-FTIR and ≈90?% by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S–Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80?% when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG?+?BSA?+?AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA.
Figure
Schematic displacement of ligands from a AuNP by DTT  相似文献   
[首页] « 上一页 [1] 2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号